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Abstract. Application of more and more automation in process control shifts 
the operator’s task from manual to supervisory control. Increasing system 
autonomy, complexity and information fluctuations make it extremely difficult 
to develop static support concepts that cover all critical situations after 
implementing the system. Therefore, support systems in dynamic domains 
should be dynamic as the domain itself. This paper elaborates on the state 
information needed from the operator to generate effective mitigation strategies. 
We describe implications of a real world experiment onboard three frigates of 
the Royal Netherlands Navy. Although new techniques allow us to measure, 
combine and gain insight in physiological, subjective and task information, 
many practical issues need to be solved. 

1   Introduction 

Designing highly complex interactive man-machine systems in process control has 
been subject of many studies. Due to ongoing automation, major changes in 
information technology have taken place, causing a radical change in the position of 
the operator from monitoring and control to supervision. Grootjen et al. [1] defined 
six main problem areas: (1) Increasing complexity; (2) Changing of information type 
and volume; (3) Increasing system autonomy causing ‘out of the loop’ operator 
problems; (4) Task integration from different domains; (5) Decreasing personnel and 
training budgets; (6) Increasing legislative constraints. 

Human-centered design methods are often proposed to establish for the human a 
central and distinct position from other aspects of the system [2,3]. In the design of a 
new system, different configurations are tested and evaluated. Finally, the most 
efficient configuration which fits on a generic set of constraints will be implemented. 
However, a different configuration could be more efficient for a specific situation or 
subset of constraints, although it would be less efficient generally. Even if we follow 
a human-centered design method, the six defined problem areas make it extremely 
difficult to develop static support concepts that cover all critical situations after 
implementing the system. Therefore, support systems in dynamic domains should be 
dynamic as the domain itself. For example Niwa and Hollnagel [4] use dynamic 
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mapping of alarm support of to enhance operator performance in nuclear power 
plants. Another example is the alarm handling support system of Dutch navy ships, 
which has different levels of automation [5].  

A way of optimizing human-machine interaction by dynamic or adaptive 
automation is the use of augmented cognition. Augmented cognition symbiotically 
integrates man and machine in a closed-loop system. The machine’s task is to detect 
both operator cognitive state and the operational context and to then dynamically 
adapt in real time in response, with the goal being to improve total man machine 
performance [6]. Taking the limitations of human information processing as a starting 
point, measurements of the cognitive state of the operator are used to trigger 
mitigation strategies to bypass or overcome the bottleneck e.g. [7-9]. Next to 
cognitive state measurements, a wide variety of data is proposed [10,11]. Our 
approach is multimodal sensing for complementary and more robust measurements. 
In Grootjen et al. [1] we describe a high level framework for HMC consistsing of four 
models (operator, task, system and context model), and an allocator which generates a 
work plan (i.e. mitigation strategy). This paper gives an overview which permanent 
and dynamic operator characteristics should be sensed and recorded in the operator 
model, classified in five categories (Section 2). Section 3 describes an experiment on 
board of three frigates of the Royal Netherlands Navy and shows which state-of-the-
art sensing and fusing tools were applied. Section 4 presents implications and future 
directions, Section 5 the conclusion.  

2   Operator model 

An essential source of information for effective and efficient mitigation is the 
operator model. The operator model contains a large variety of information (see [1] 
for a literature overview), we propose classification in five categories (Fig. 1). 
1. Permanent characteristics. This category contains fixed personal characteristics, 
which can be used to uniquely identify an operator. Characteristics like age and 
gender can affect a person’s cognitive abilities and can be used in classification of 
operator groups. 
2. Dynamic characteristics. This category contains characteristics that can change 
gradually over time. Like with some permanent characteristics, this information can 
be used for classification of operator groups. 
3. Baseline state. This category contains baseline values of the operator’s state.  
4. Momentary state. This category contains real-time operator state measurements and 
task information (i.e. on which task the operator is working). Note that this 
information is also used to update the baseline state information.  
5. Critical load areas: This category describes critical load areas using the CTL 
model of Neerincx [3].  

The allocator uses information from the operator model to determine critical load 
areas, which are stored in the operator model itself. Furthermore, the actual real-time 
CTL is also calculated by the allocator. Comparing actual CTL and critical areas 
enables determination of a work plan. 
 



Fig. 1. Classification of operator information in five categories.  

3   Real World Experiment 

The Royal Netherlands Navy started in 1991 with the development of a new type of 
frigate: the Air Defense and Control Frigate (ADCF). In 2001 the first of four ADCFs 
was commissioned. For monitoring and control of all platform, energy and propulsion 
systems the ship has been equipped with an IMCS (Integrated Monitoring and Control 
System). During multiple sailing sessions on board of the ADCFs, the ship control 
centre (SCC) was evaluated using machinery breakdown drills. An important part of 
this evaluation was the collection of a wide variety of data for development of the 
operator model. Section 3.1 will focus on the method used to collect this data, the 
complete experimental setup used for the total SCC evaluation is out of the scope of 
this paper. Section 3.2 describes the organization of data afterwards. 

3.1   Method 

Three ADCFs participated in the experiment, each contained four active teams 
responsible for around the clock SCC operation. All teams consisted of four persons, 
a manager (sergeant), an operator (corporal), and two engine room operators (sailors). 
The participants had to deal correctly with the emergencies that appeared. In our 
experiment we focused only on the manager and the operator (12 of each in total, all 



males). The manager and operator used an IMCS console consisting of three screens, 
a keyboard and trackball for system operation. For communication purposes they had 
a voice terminal, several telephones and a separate push-to-talk engine room 
communication system. Fig. 2 shows the experimental setup.  
 

 
Fig. 2. The experimental setup of the operator (left) and manager (right). 

 
For the operator and for the manager we installed a small spy camera (1/3" Sony 
super HAD color CCD) between the SCC screens to record a front view. On the 
ceiling we installed two digital cameras for the rear view. After each scenario, the 
participants had to do an individual video evaluation of the tasks just performed, 
using a laptop and handheld device. Each minute they were asked to rate task 
complexity and subjective effort on a five point scale (Fig. 3, based on the workload 
watch of Boer [12]. For heart and respiratory measures a Mobi8 recording device was 
used [13]. During the experiment we had one eye tracker available [14], which was 
used for the operator (Fig. 4, right). High quality voice recordings were made using 2 
wireless headsets (Img Stageline HSE-210/SK), a receiver (Img Stageline TXS-
890/TXS-890HSE) and amplifier (InterM PP-9214/R150Plus). Two Observer XT 
systems [15] were used to record all video and audio data. The external data module 
of the Observer XT system was used to import and synchronize data afterwards 
(Section 4). Individual systems were connected by a Netgear Fast Ethernet Switch 
FS608 v2.  

The scenarios took place during the day or night, depending on the availability of 
the ship and working schedules of the participating SCC teams. The total time needed 
for one team was about 4 hours. 



 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Operator scoring complexity and effort during video replay of the just performed 
scenario (left and middle). Measuring pupil dilation (right). 

3.2   Organizing Data  

After a challenging period of collecting data at sea, the next exercise was organizing 
the data and prepare it for interpretation. To do this, we used the Observer XT of 
Noldus. This section will give an overview of the steps followed in organizing the 
data for the operator. Data for the manager was organized in a similar way, except for 
the eye tracker data. Fig. 4 shows part of the data in a screen dump of the Observer 
software.  
Video and audio. With the Observer we recorded rear and front images of the 
operator. The rear recordings included low quality audio, the front high quality. Using 
this high quality audio we measured four raw speech features that are likely to 
correlate with stress (F0, SLOPE, COG and HI). See Section 5 for a short description. 
All features were extracted with Praat, a tool for speech analysis [16]. Furthermore, 
the front images were analyzed using Vicar Vision's FaceReader software [17]. To get 
the best results, we configured the FaceReader to do two frame-by-frame analyses. 
The first time we configured the FaceReader as if the spycam was positioned under 
the IMCS screen. The second time we took the default position. See Section 5 for a 
short description. Each analysis gives 7 output variables: happy, sad, angry, disgusted, 
surprised, scared and neutral. 
Physiological Mobi data. We measured the expansion of the abdomen and the thorax 
due to breathing, the electrocardiogram and a sync signal. This data was downloaded 
from the flash card and analyzed with external software. Six variables were imported 
into the Observer: instantaneous respiratory rate (Hz), instantaneous heart rate (bpm), 
heart rate variability (0.04-0.15 Hz and 0.15-0.4 Hz), the sync signal and an artifact 
signal.  
Subjective data. There are 3 subjective variables: complexity, effort and expert 
performance rating. All three variables were scored every minute. To import this data 
into the Observer, the variables had to be converted from single values every minute 
to a continuous block signal.  
 

 



 
Fig. 4.  The Observer XT (Noldus, 2006 192 /id). From top to bottom: three rows of task data,  
heart rate, respiratory rate, complexity, effort, voice stress and performance.  

Tobii data. The eye tracker data was recorded on a separate computer. This data was 
exported with using Clearview [14], analyzed with MatLab [18] and imported into the 
Observer.  
Task data. To obtain task data, videos were analyzed by experts using the observer 
software. Behavioral scoring schemes were composed according to the CTL method 
of Neerincx [3].   

4   Implications & Future Directions 

Observer XT. During and after the experiment the Observer XT was intensively 
used. We linked two Observer systems and the eye tracker so we could start recording 
all audio, video and the eye tracker by pressing one button. This saved us a lot of 
work synchronizing data streams after the experiment. Imported data using the 
external data module had to be synchronized manually. Having all data on the same 
timeline gives great insight, for example one can easily detect that missing eye tracker 
data often occurs simultaneously with high subjective effort. Clicking on an 
interesting part of a variable directly shows accompanying video images. However, 
such a big amount of data requires datamining techniques. We planned to import all 
data into the Observer, synchronize it and then export in again in one datasheet. 



Unfortunately the export option was not working in this specific way, and will be 
implemented in a next version of the software. Future research will hopefully reveal 
the real meaning of this data.  
Voice analysis. Many studies have tried to determine a general acoustic profile of 
stressed speech. In order to find a general acoustic stress profile, Scherer et al. [19] 
suggest different types of stress should be defined (e.g., emotional stress and 
cognitive stress). Although some acoustic features seem to correlate with stressed 
speech, a general "acoustic stress profile" has yet to be found. Most of the studies 
report higher values for speech rate, mean F0, mean intensity/energy, and the energy 
in the higher frequency regions of the spectrum in speech under stress [19,20]. We 
have measured four raw speech features that are likely to correlate with stress. First, 
we measure F0 which is expected to increase in speech under stress. The other three 
measures are based on the observation that the proportion of energy in the higher 
frequency regions increases in stressed speech. This can be measured in several ways: 
1) by measuring the slope of the long-term averaged spectrum (SLOPE), 2) by 
measuring the centre of gravity (COG) and 3) by measuring the Hammarberg Index 
(HI) which is defined as the maximum energy below 2000 Hz minus the maximum 
energy between 2000 - 5000 Hz (HI). Thus, it is expected that F0, SLOPE and COG 
increase, while HI decreases in stressed speech. We experienced some difficulties 
during feature extraction that were due to the real world nature of the data: e.g., 
background noise like alarm signals, clipping of the signal by the ship’s 
communication system and crosstalk.  
Facial emotion. Automatic facial expression analysis usually consists of 3 tasks: 1) 
detection of the face, 2) feature detection and extraction and 3) classification of 
emotions. The best known method for facial data extraction is the facial action coding 
system (FACS, see [21]). The FACS system describes facial movements in terms of 
Action Units (AU). The system consists of a taxonomy of 44 AUs with which facial 
expressions can be described, and has attracted many researchers from the field of 
computer vision to develop automatic facial expression analyzers based on AUs. The 
automatic facial expression analyzer we have used, is based on Active Appearance 
Models and can classify emotions in six basic universal emotion categories. The 
FaceReader can only give output when the image quality is at an acceptable level, 
which is difficult given the real world conditions under which the data was recorded. 
Bad illumination, different poses of the head and background noises are some of the 
difficulties that the recognition software has to deal with. Fig. 5 shows classification 
of one image using the model where the camera is positioned under the screen. In 
contrast with this result, image quality is too poor for classification if we use the 
default model. Also due to background clutter, image quality can decrease making a 
classification impossible [22]. For future research we would recommend to reduce 
background clutter as much as possible, for example with a curtain. Furthermore, 
increase the amount of light in the face with a evenly distribution and zoom in as 
much as possible.  

We did not yet analyze the seven output variables of the FaceReader for a stress 
related component due to export problems. As was stated earlier this Section, future 
research should reveal correlations.  

 



 
Fig. 5.  Classification by the FaceReader [17] with a “below screen model”. Using a default 
model for the camera position decreases image quality and makes classification impossible.  

Heart and respiratory rate. During the experiment, the operator and manager wore 
the Mobi8. This is a small and light 8 channel physiological recording system. Data 
can be recorded on a flash card, or can be directly transferred using Bluetooth to a 
computer. Our initial plan was to use Bluetooth and link the system to the Observer so 
data would be automatically synchronized. Due to unknown problems with Bluetooth 
connection, we chose for recording with the more reliable flash card. At the start of 
every scenario the participants gave a synchronization pulse by pressing a button on 
the device, which could later be used when importing the data into the Observer.  In 
future experiments we strongly recommend to use an automatic synchronizing 
feature. 
Eye tracker. In the SCC, the participants had three screens available. Because the 
screen on top wasn’t used very often, the eye tracker was configured for the two 
lower screens. Unfortunately, the operator moved around a lot. Communication 
devices, talking to colleagues or simply moving from the screen to relax or to the 
screen to read something, caused missing data. Because of the missing data, we were 
not able to subtract eye blinks from the pupil dilation information. In future real world 
experiments we would recommend a mobile, wearable eye tracking system. A 
multiple camera system could also work.  
Follow up. We are planning the next experiment for spring 2007. For this experiment, 
experiences of real world experiments like this one and Grootjen et al. [23] and more 
controlled experiments [24,25] will be combined into an augmented cognition Closed 
Loop Integrated Prototype (CLIP). Although a lot preparation has already been done, 
some challenges are: 
The allocator. The allocator should construct critical (and optimal) CTL areas, be able 
to generate a real time CTL operator signal and generate mitigation strategies. After 
analyzing data described in Section 3, we will select measurements and develop a 
method to fuse this data into one or two variables. With SOWAT [1] we will create 
CTL areas. Using information from other models (e.g. task model) should prevent us 
from an oscillating system [26]. 
Trust, situational awareness (SA) and locus of control. Being able to know when to 
mitigate is just one side of the story. Harkness-Regli et al. [27] state: “Adjusting non-
optimal cognitive states can be at least as difficult as recognizing them.” Our 
experiment will include a full usability evaluation. To improve trust and SA, we will 



evaluate usage of visual load feedback and a special SA display. We expect to 
increase trust and SA by giving the operator insight in the adaptive process. 
Furthermore, we will compare a situation in which the user is in charge of mitigation 
with one where the system is in charge.  

5   Conclusion 

Application of more and more automation, increasing system autonomy, complexity 
and information fluctuations make it extremely difficult to develop static support 
concepts that cover all critical situations after implementing the system. Augmented 
cognition offers a possible solution: symbiotic integration of man and machine in a 
closed-loop system. Although theoretical frameworks and methods are being 
developed [1,28,29] and controlled experiments have proven to increase performance 
[8], experience with real world environments is crucial in the development of new 
augmented cognition systems. This paper showed the implications of a real world 
environment during measurement and processing of data. Although new techniques 
allow us to measure, combine and gain insight in physiological, subjective and task 
information, many practical issues need to be solved.  
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