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Abstract. Operators on naval ships have to act in dynamic, critical and high-

demand task environments. For these environments, a cognitive task load 

(CTL) model has been proposed as foundation of three operator support 

functions: adaptive task allocation, cognitive aids and resource feedback. This 

paper presents the construction of such a model as a Bayesian network with 

probability relationships between CTL and performance. The network is trained 

and tested with two datasets: operator performance with an adaptive user 

interface in a lab-setting and operator performance on a high-tech sailing ship. 

The “Naïve Bayesian network” tuned out to be the best choice, providing 

performance estimations with 86% and 74% accuracy for respectively the lab 

and ship data. Overall, the resulting model nicely generalizes over the two 

datasets. It will be used to estimate operator performance under momentary 

CTL-conditions, and to set the thresholds of the load-mitigation strategies for 

the three support functions.  

Keywords: mental load, emotion, Bayesian networks, cognitive engineering, 

Defense and Space operations. 

1   Introduction 

Crews on naval ships have to operate in dynamic, critical and complex task 

environments, which impose high fluctuations of the required cognitive resources. 

These resources are constrained and may not fit the momentary task demands, 

resulting in performance decrements. To mitigate such load bottlenecks, three 

operator support functions are being developed: adaptive task allocation, cognitive 

aids and resource feedback [1, 2, 3]. Important foundations of these support functions 

are situated theories on cognitive task load (CTL) and emotional state (ES) [4]. Such 

theories include accepted features of cognition such as limited processing capacity, 

are validated in the context of a specific domain and possibly group of task 

performers, and provide predictions of the task performance within this domain. 



2 Mark A. Neerincx, Stefan Kennedie, Marc Grootjen, Franc Grootjen 

Consequently, they can provide the “context-awareness” for the proposed support 

functions. Face validity is required to realize adequate trust and involvement of users.  

This paper presents the construction of a Bayesian network model for CTL as 

refinement of a situated theory on naval operators’ information processes. 

1.1   Cognitive Task Load 

The cognitive task load (CTL) theory distinguishes three load dimensions. The first 

dimension is the time occupied, which is high when the operator has to work with 

maximum cognitive processing speed to search and compare known visual symbols or 

patterns, to perform simple (decision-making) tasks, and to manipulate and deal with 

numbers in a fast and accurate way. With respect to the second dimension, the level of 

information processing, (a) information that is processed automatically, results into 

actions that are hardly cognitively demanding, (b) routine procedures involve rather 

efficient information processing, and (c) problem solving and action planning for 

relatively new situations involve a heavy load on the limited capacity of working 

memory. Task-Set Switches is the third load dimenssion, addressing the demands of 

attention shifts or divergences in which different sources of human task knowledge 

have to be activated. It should be noted that the effects of cognitive task load depend 

on the concerning task duration. In general, the negative effects of under- and 

overload increase over time. 

1.2   Emotional State 

Neerincx [4] proposes to combine the CTL-model with a model of the Emotional 

State (ES) for high-demand task domains in which the human sometimes works in 

extreme and critical conditions. The ES-model distinguishes two dimensions: the 

arousal level—low versus high—and the valence level—positive versus negative [5]. 

Emotion and CTL are related: for specific load conditions a specific emotional state 

(“response”) can be expected. For example, when task load increases, an adequate 

response is to invest extra effort (i.e., arousal increases) in order to maintain good 

performance [3].  

1.3   Model Levels 

For the CTL-ES model, we distinguish three levels (Fig 1). The first level describes 

the human act observables, which are behavioral and bodily variables that correlate 

with human information processes (HIP).  

   At the second level, HIP dimensions represent variables that correlate with human 

performance. SOWAT, an activity monitoring tool, can be used to derive the CTL-

dimensions’ values from observables as user-interface acts [2], while affective 

computing techniques can be used to derive the ES-dimensions’ values from, for 

example, facial and speech expressions [6]. An operator profile can be applied for 

personalized estimation of HIP-dimensions’ values from observables. For example, 
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the level of experience influences the Level of Information Processing (LIP): the 

higher the experience, the lower the LIP value. The dimensional model is trained in 

advance by  datasets that include performance measures. This estimation may concern 

the current performance and the near-future performance.  

   At the third level, HIP classes are derived from the dimensional models. CTL-

classes are underload (UL), overload (OL), vigilance (VI), cognitive lock-up (CL), 

and neutral (NE); ES-classes are boredom (BO), relaxed (RE), excited (EX), stressed 

(ST), and neutral (NE).  

 

Fig. 1. The Performance, Cognitive Task Load and Emotional State model. 

1.4   Performance Estimation 

This paper focuses on the construction of the dimensional CTL-model (i.e., the 2
nd

 

level of Fig. 1). For this purpose, we need a method to analyze data from training and 

actual task performances, which can cope with missing data. Furthermore, it should 

be easy to extend the model, for example, starting with CTL-dimensions and adding 

ES-dimensions when appropriate. In addition, the model should be transparent (i.e., 

providing a structure that gives insight in which variable influences other variables), 

enabling estimations of near-future values. Bayesian networks seem to fulfill these 

requirements.  This paper investigates whether a Bayesian network can be constructed 

that provides adequate estimations of the CTL-performance relationships for two 

datasets: operator performance on a high-tech sailing ship and operator performance 

with an adaptive user interface in a lab-setting. 

2   Bayesian Networks 

Bayesian networks are graphical models for reasoning under uncertainty. A Bayesian 

network consists of a network structure and conditional probability tables. The 

structure of a Bayesian network consists of nodes and arcs. The nodes represent 

variables, and the arcs represent direct dependencies between the variables. If there is 

an arc from one node to another, then the first node is called the parent of the latter 

(the child). The structure of a Bayesian network is a directed acyclic graph (DAG). In 

other words, the structure does not contain any cycles. Each node has a conditional 
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probability table. This table defines the probabilities of that node on taking each of its 

values, given its parent(s). Bayesian networks are often applied in the medical 

domain. Given symptoms, the Bayesian network can compute the probability of the 

presence of a disease using Bayes’ Theorem (see Equation 1). 
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This is called Bayesian inference and can be explained with the hypothetical 

network structure of Fig. 2d as example, in which performance relates to TO, TSS and 

LIP. Table 1 shows possible conditional probability tables. If there is evidence that a 

certain person has low performance, the probability that this person experiences high 

TO, TSS and LIP can be read in the tables. These probabilities are respectively 0.5, 

0.4 and 0.6. The other way around, it is possible to calculate the probability that a 

person has a low performance when high TO, TSS and LIP are observed. This can be 

done using Bayes’ Theorem: 

 

 

Table 1. Possible conditional probability tables for the network structure of Fig. 2d. 

Performance 

low medium high 

0.3 0.4 0.3  

 TSS 

Performance low medium high 

low 0.3 0.3 0.4 

medium 0.6 0.3 0.1 

high 0.6 0.4 0.0  
 

 TO 

Performance low medium high 

low 0.0 0.5 0.5 

medium 0.1 0.4 0.5 

high 0.7 0.2 0.1  

 

 LIP 

Performance low medium high 

low 0.0 0.4 0.6 

medium 0.1 0.4 0.5 

high 0.7 0.2 0.1  
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3   Experiment: Analysis of two Datasets 

To create a Bayesian Network for Performance and Cognitive Task Load, we 

analyzed two datasets: the first dataset was automatically collected during operator’s 

interaction with a prototype user interface, and the second dataset was manually 

collected during operator’s performance on a sailing ship.  

3.1   Lab Dataset 

The Lab data were acquired during an experiment at the MBO Shipping & 

Transportation College of Rotterdam (for details, see [7]). 12 students participated, all 

second and third year students (average age of 20.1 with a standard deviation of 2.1, 

11 males, 1 female; relevant knowledge about the maritime domain). All participants 

had to deal with alarms during platform supervision, damage control and navigation 

tasks. All performed actions were recorded in log files and used to calculate TO, TSS, 

LIP and performance, with use of SOWAT [2]. 

The Lab data contained 1407 cases with data for LIP, TSS, TO and Performance. 

Each case in the data file corresponds to a sliding window of 60 seconds with 50 

seconds overlap. The values for LIP range from 0 (low) to 6.5 (high), TSS ranges 

from 0 to 5, TO ranges from 0% to 100%, and performance ranges form 0 (low) to 4 

(high). All values of the variables were converted to the values low, medium and high 

for our analyses. Since Bayesian networks are best trained with data that have an 

equal distribution, we have chosen the thresholds to accomplish this as much as 

possible (see Table 2 for the distribution). 

From this data file we created a balanced train and test set. We have selected  333 

cases with low performance randomly form the total of 427 cases with low 

performance, and did the same for medium and high performance. The test set 

contained 150 cases, also with an equal distribution that was randomly selected. The 

other 258 cases were not used for training or testing since this would result in 

unbalanced train and test sets. 

Table 2. Distribution of cases over CTL and Performance for the two datasets. 

 Lab data Ship data 

 TO TSS LIP Perf. TO TSS LIP Perf. 

Low 476 722 462 427 571 1123 426 373 

Medium 460 425 468 398 599 378 591 390 

High 471 260 477 582 582 251 735 989 

3.2   Ship Dataset 

The Ship data were acquired during an experiment in the Ship Control Centers of 

three sailing air defense and command frigates (for details, see [8]). Each ship was 

manned with four active duty teams, data collection concerned two persons of each 

team. In total there were 12 teams and 24 participants (all male). Each team had to 
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perform three scenarios that varied in TO, TSS and LIP. All scenarios were recorded 

on video and scored by experts afterwards on TO and LIP.  LIP was scored by the 

participants themselves. SOWAT [2] was used for integration of all data and 

generation of 1752 cases. Each case in the data file corresponds to a sliding window 

of 60 seconds with 40 seconds overlap. The values for LIP range form 1 (low) to 5 

(high), TSS ranges from 0 to 6, TO ranges from 0% to 100%, and performance ranges 

form 0 (incorrect or too slow response) to 2 (correct response). All values of the 

variables were converted to the values low, medium and high. For this  dataset we 

have also chosen the thresholds to accomplish an equal distribution as much as 

possible (see Table 2 for the distribution).  

From this data file we created a train set and a test set. The train set contained 969 

cases with an equal distribution of performance. The cases were also randomly 

selected. The test set contained 150 cases, also with an equal distribution that was 

randomly selected. The other 633 cases were not used for training or testing. 

3.3   Creating the Network Structure 

When creating a Bayesian network, the structure of the network can either be defined 

by an expert, or learned from a dataset. We used GeNIe 2.01 to create four network 

structures for each dataset. GeNIe is equipped with four structure learning algorithms: 

• Essential Graph Search (EGS) algorithm [9] 

• PC algorithm [10] 

• Greedy Thick Thinning (GTT) algorithm 

• Naïve Bayesian network (NBN) algorithm [11] 

After creating the network structures we created the conditional probability tables 

using Netica-J’s2 parameter learning algorithm. This algorithm was applied to the 

same train sets that were used for structure learning. 

Finally, the performance of the created Bayesian networks was tested with the test 

sets using Netica-J’s performance testing algorithm. These results were evaluated 

using a Chi-square test. 

3.4   Results 

This section first shows the results for the Lab and Ship datasets, then discusses the 

generalizability of the networks. 

3.4.1   Lab Data 
The network structures that were created by the four structure learning algorithms 

using the Lab train set are, with the exception of the NBN algorithm, very similar. 

The first three algorithm produce a fully connected network structure, the only 

difference is the direction of the arcs (Fig. 2). 

                                                           
1 http://genie.sis.pitt.edu/ 
2 http://www.norsys.com/ 
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Fig. 2a. EGS 

 
Fig. 2b. PC 

 
Fig. 2c. GTT 

 
Fig. 2d. NBN 

Fig. 2. The created network structures for the Lab dataset using the four algorithms. 

As a result of the similarity in the network structure of Fig. 2, the percentages of 

cases classified correctly are the same for these three algorithms. All four algorithms 

perform overall significantly better than random guessing a performance level (all 

p<0.000). The NBN algorithm performed overall slightly better than the other 

algorithms, but this difference was not significant (p<0.816). When we zoom in to the 

different performance categories, we see that de difference between random guessing 

and the NBN algorithm is significant for low performance (p<0.014). For medium 

performance, the difference between the EGS, PC and GTT algorithms and random 

guessing are significant (p<0.008). Finally, for high performance the difference 

between the four algorithms and random guessing is significant (p<0.001). 

When we look at the network with the highest performance in detail, we see that it 

is not able to distinguishing well between low and medium performance (see Table 3, 

left). When we join the performance categories low and medium together, the 

percentage correct classified increased from 58% to 85% (see table 3, middle), while 

the expectation value (“random”) increased to from 33% to 50%. A drawback of this 

method is that the dataset is not distributed equally for performance. To accomplish 

an equal distribution we adjusted the threshold for performance. The Bayesian 

network was trained with a train set that consisted of 500 cases with low and 500 

cases with high performance. The network was tested with a test set that contained 50 

cases with low and 50 cases with high performance. This network classified 86% of 

the cases correct. More importantly, all cases with low performance were recognized, 

see Table 3, right. This Table is the same for all network structures that were tested. 

In other words, all network structures perform the same, see Fig. 3, right. 

Table 3. Performance of the networks with the highest percentage correct classified with three 

(left) and two performance levels, unbalanced (middle) and balanced (right). 

 Prediction 

Actual low medium high 

low 29 21 0 

medium 20 23 7 

high 10 5 35  

 Prediction 

Actual low high 

low 93 7 

high 15 35  

 Prediction 

Actual low high 

low 50 0 

high 14 36  

 

The networks that were trained with two performance categories performed overall 

better than the networks that were trained with three performance categories, even 

after correction for chance using Cohen’s Kappa. 
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Fig. 3. Network performance of the different algorithms for the for the Lab dataset with three 

(left) and two (right) performance levels (balanced). 

3.4.2 Ship Data 
The network structures that were created by the four structure learning algorithms 

using the Ship train set show more variation (Fig. 4) than we have seen with the Lab 

dataset (Fig. 2). The structures are not fully connected and with the exception of the 

NBN algorithm, there is no direct dependence between TSS and performance. 

 

 
Fig. 4a. EGS 

 
Fig. 4b. PC 

 
Fig. 4c. GTT 

 
Fig. 4d. NBN 

Fig. 4. The created network structures for the Ship dataset using the four algorithms. 

As a result of the variation in network structure, the percentages of cases classified 

correctly differ considerable (Fig. 5, left). All four algorithms perform overall 

significantly better than random guessing a performance level (p<0.000 for the EGS 

and PC algorithm, p<0.005 for the GTT algorithm and p<0.045 for the NBN 

algorithm). The PC algorithm shows the best performance, but does only perform 

significantly better than the NBN algorithm (p<0.029). 

The Ship dataset was also tested with two performance levels (Fig. 5, right). The 

percentage classified correct of the best network increased from 57% to 76%, while 

the expectation value (“random”) increased to from 33% to 50%. 

The networks that were trained with two performance categories performed overall 

better than the networks that were trained with three performance categories, even 

after correction for chance using Cohen’s Kappa. 
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Fig. 5. Network performance of the different algorithms for the for the Ship datasets with three 

(left) and two (right) performance categories (balanced). 

3.5   Generalizability 

To test the generalizability of the networks, we tested the performance of the 

networks that were trained with the Ship train-set with the Lab test-set and vice versa 

(Table 4). When these results are compared with the results of the networks that have 

been tested with the same datasets as they were trained, we see that almost all 

differences are not significant. The only exception is the network that was created 

with the PC algorithm using the Lab data with two performance categories, and tested 

with the Ship data (p<0.009). 

Table 4. Cross dataset testing. 

  Correct classification (%) 

  3 performance categories 2 performance categories 

Train set Test set EGS PC GTT NBN EGS PC GTT NBN 

Lab Lab 56.7 56.7 56.7 58.0 86.0 86.0 86.0 86.0 

Ship Lab 56.0 53.3 54.0 56.0 79.0 81.0 84.0 84.0 

Lab Ship 56.7 56.7 56.7 58.0 70.0 63.0 71.0 74.0 

Ship Ship 55.3 57.3 49.3 44.7 76.0 74.0 72.0 74.0 

4   Conclusions and Discussion 

Previous research showed the effects of CTL on operator task performance, and 

possible mitigation methods (adaptive task allocation, cognitive aids and resource 

feedback). This paper provides the first results on applying Bayesian Networks to 

model these effects in order to estimate and predict possible performance 

shortcomings. We derived the CTL-performance relationships for two datasets: 

operator performance with an adaptive user interface in a lab-setting and operator 

performance on a high-tech sailing ship (Ship). The first dataset provides the best 

results, probably because the recording was conducted in rather controlled conditions 

and all three CTL-factors showed variance in the scenario. In contrast, the dataset of 
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the sailing ships contained relatively few Task-Set Switches (TSS), which might 

explain the creation of network structures that do not include a direct relationship of 

TSS with Performance (see Fig. 4). However, the “Naïve Bayesian Network” model 

that is trained with the more-balanced Lab dataset proves to provide similar 

performance prediction results for the Ship dataset as the models that are derived from 

the Ship training dataset (i.e., for the two category performance, see Table 4). So, the 

“Naïve Bayesian Network” algorithm seems to be a good choice, providing 

performance estimations with 86% and 74% accuracy for respectively the lab-setting 

and sailing ship data (with respectively a 100% and 78% hit-rate for the low 

performance category). Overall, the resulting model nicely generalizes over the two 

datasets. Although the results are relatively positive, there is a clear room for 

improvement. Currently, we are extending the modeling approach with emotion, both 

for the defense and the space domain. A major question is how to adequately address 

the occurrence of very rare cases for which the dataset is not trained? A method to 

detect such occurrences would be very beneficial. 

References 

1. Neerincx, M.A. (2003). Cognitive task load design: model, methods and examples. In: E. 

Hollnagel (ed.), Handbook of Cognitive Task Design. Chapter 13 (pp. 283-305). Mahwah, 

NJ: Lawrence Erlbaum Associates. 

2. Grootjen, M., Neerincx, M.A., Stolk, K.D., Weert, J.C.M. van & Bierman, E.P.B. (2007). 

Design and user evaluation of an interface prototype that adapts to the operator's cognitive 

task load. In: D.D. Schmorrow, D.M. Nicholson, J.M. Drexler & L.M. Reeves (Eds), Proc. 

4th Intern. Augmented Cognition. Arlington, Virginia: Strategic Analysis, Inc. pp. 97-106. 

3. Neerincx, M.A., Bos, A., Olmedo-Soler, A. Brauer, U. Breebaart, L., Smets, N., Lindenberg, 

J., Grant, T., Wolff, M. (2008). The Mission Execution Crew Assistant: Improving Human-

Machine Team Resilience for Long Duration Missions. In: Proc. of the 59th International 

Astronautical Congress (IAC2008), 12 pages. Paris, France: IAF. DVD: ISSN 1995-6258  

4. Neerincx, M.A. (2007). Modelling Cognitive and Affective Load for the Design of Human-

Machine Collaboration. In: Engineering Psychology and Cognitive Ergonomics, HCII 2007, 

pp. 568-574. Berlin: Springer-Verlag. 

5. Truong, K.P, van Leeuwen, D.A. & Neerincx, M.A. (2007). Unobtrusive Multimodal 

Emotion Detection in Adaptive Interfaces: Speech and Facial Expressions. In: D.D. 

Schmorrow & L.M. Reeves (Eds), Foundations of Augmented Cognition, 3rd ed., LNAI 

4565 proceedings, pp. 354-363. 

6. Bradley, M.,  Lang, P. (1994). Measuring emotion: The Self-Assessment Manikin and the 

Semantic Differential. Journal of Behavioral Therapy & Experimental Psychiatry 25, 49-59. 

7. Grootjen, M., Reijenga, Y. & Neerincx, M.A. (to appear). A user evaluation of an interface 

that adapts to the user’s cognitive task load. 

8. Grootjen, M., Greef, T. de & Neerincx, M.A. (to appear). Effects of Level of Automation on 

Operator Task Load and Performance on a Sailing Naval Ship. 

9. Dash, D., Druzdzel, M. (1999). A hybrid anytime algorithm for the construction of causal 

models from sparse data. In: Proc. 15th Annual Conference on Uncertainty in Artificial 

Intelligence (UAI-99), pp. 142—149. San Francisco, CA: Morgan Kaufmann.  

10. Spirtes, P., Glymour, C.N., Scheines, R., Causation (2000). Prediction, and Search. 

Cambridge: MIT Press. 

11. Duda, R.O., Hart P.E. (1973). Pattern Classification and Scene Analysis. Wiley, New York. 


